
Topology and renormalisability. II

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1983 J. Phys. A: Math. Gen. 16 2541

(http://iopscience.iop.org/0305-4470/16/11/023)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 16:45

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/16/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 16 (1983) 2541-2570. Printed in Great Britain 

Topology and renormalisability: II 

Richard Banach? 
Department of Theoretical Physics, Schuster Laboratory, Manchester University, 
Manchester M13 9PL, UK 

Received 13 August 1982 

Abstract. The connection between space-times related by a covering projection and the 
renormalisability of quantum field theories defined on them is re-examined in the 
framework of constructive field theory. It is shown that a previous derivation is the 
heuristic version of a conditioning argument and the possibility of applying such an 
argument to infinite fundamental group situations (in the specific guise of finite- 
temperature field theory) and to boundary-value problems is explored. It is found that 
the implications of conditioning are broadly (though not in every detail) in agreement 
with known facts from renormalised perturbation theory. 

1. Introduction 

In a previous publication (Banach 1980b) the author showed that a quantum field 
theory on a multiply connected background could be derived from the corresponding 
field theory on the universal cover of the background by integrating out certain degrees 
of freedom of the covering space theory. This was done by an explicit integration of 
the relevant variables of the external source in the vacuum generating functional Z ( J ) .  
The consequences of this were the following: if the covering space Z ( J )  had already 
been made finite, by appropriate renormalisation of the relevant constants in the 
action functional, then the resulting Z ( J )  for the multiply connected background 
would automatically be finite since the integration is independent of these constants. 
This means that the renormalisation procedures for the two theories are essentially 
identical. 

The simplicity of this reasoning is extremely appealing, but is the argument in fact 
correct? It is to this and related questions that this paper is addressed. 

A number of problems and difficulties suggest themselves quite readily. Firstly, 
the argument presented in Banach (1980b) was for a finite fundamental group (Irl< 00) 

only; can it be extended in any reasonable way to the IF\= 00 situation? On the other 
hand, regardless of the size of Ir], the multiply connected problem can be represented 
as a boundary-value problem on the universal cover by choosing some suitable 
fundamental domain, and imposing appropriate periodicity conditions on the boun- 
daries. Does the method yield a reasonable treatment of this version of the problem, 
and in fact of boundary-value problems in general? Here there is an immediate 
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difficulty. The argument as originally presented (and briefly recapitulated in § 2) would 
suggest that all one needs to do in a boundary-value problem is to integrate out those 
functions in the function space from which J takes its values, which are supported in 
the exterior of the domain, This unfortunately does not give us any clue about what 
boundary conditions might arise as a result of such a procedure or indeed how we 
might implement any particular boundary or periodicity conditions we might be 
interested in. This, of course, is a serious drawback as different boundary conditions 
can give quite different physical properties to a given system. 

In quantum field theory, different boundary conditions are intimately related to 
different self-adjoint extensions of a core Laplacian in a region. Thus, if our functional 
integral method is to be believed, it must be refined at least to the point where 
self-adjointness emerges in some natural way. Here, however, there is a profound 
difficulty. In conventional perturbation theory functional integrals serve little purpose 
other than combinatorial housekeeping, which they do with such remarkable efficiency 
that we usually forget that the conventional manipulations that we subject them to 
have no mathematical validity whatsoever and are, in reality, only an astonishing 
shorthand for manipulations of much greater complexity on the basic elements of 
interaction picture field theory (which, admittedly, have an equally dubious mathemati- 
cal pedigree). To accomplish the above objective, then, we must at least go to a 
framework where functional integrals do have some mathematical validity, namely 
the scenario of measures on function spaces defined by generalised random processes 
in Euclidean constructive field theory, whereupon another problem presents itself. 
For the case of four-dimensional space-time, no non-trivial quantum field theories 
are known to exist-none have been constructed explicitly, so it seems that in the 
most physically interesting case, the only mathematically acceptable framework for 
treating our problem is incapable of even addressing it. 

Accordingly, we will set our sights somewhat lower and will propose a generalisation 
of the ideas of Banach (1980b) which is applicable to cut-off field theories. Of course 
this begs a lot of questions since it is the no cut-off limit that is of most interest to 
us, but even with these restrictions, we will find that the argument fails in the Il7 = 00 

case. 
Nevertheless, all is not lost. The original conclusion of Banach (1980b) is still 

valid and proofs for the Iri <CO case and for finite-temperature field theory (/rl= CO) 
are given in § 2. These essentially follow Tyutin (1981) and, being of BHPZ type, 
avoid functional integrals and their horrendous problems altogether. 

The plan of this paper is as follows. In § 2 we will briefly recapitulate the argument 
of Banach (1980b) and give the BHPZ proofs referred to. The section closes with an 
outline, in non-mathematical terms, of what is to follow. In 9: 3 we set up the apparatus 
of generalised random processes and of functional integrals, for which we will make 
use of two of the many specific models available. We will also show that the argument 
of Banach (1980b) is a non-rigorous version of a conditioning argument which we 
describe. 

In 86 4 and 5 we see how this argument fares when confronted with known data 
from renormalised perturbation theory. In § 4 we examine the multiply connected 
case and we see that in the jrl <CO case everything is fine while if = 00 the conditioning 
argument breaks down. In § 5 we treat boundary-value problems and we see that in 
broad terms renormalisability correlates well with conditioning, 

Section 6 is a conclusion wherein we make some suggestions as to natural follow 
ups to this work. Three appendices contain technical details. 
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2. Topology and renormalisability 

The sine qua non of this paper is the following derivation. Let us write the vacuum 
generating functional on a multiply connected space M in the automorphic representa- 
tion on its universal cover ni, 

Z " ( J )  = [ [dc$][dA]exp(ih-'[S(4)+hA(q5 - 4 " ) + J 4 ] }  (1) 

where the integration over the auxiliary field A is just a delta functional to restrict 
the integration over 4 to only those q5 satisfying the periodicity condition appropriate 
to the identification of the process with one on M, which we denote by the label a.  
By the results of Banach (1980a) there is an orthogonal split in L2(& when the 
fundamental group is finite (the propagators respecting this split) 

6 = d "  +qb' d"i$-=O ( 2 )  
where, as in ( l ) ,  juxtaposition of fields denotes the inner product in L2(n i ) .  Noting 
now that 

we can do the A integration getting 

Z " ( J )  = [dh"] [ [dA '1 exp(hA ' S / S J ) Z ( J )  

where Z ( J )  is the vacuum generating functional on A?. Removing the A a integration 
we find 

Z"(J )  = [ [dJ']Z(J", Ji). (6 )  

This is the main result of Banach (1980b) and shows that (at this heuristic level) the 
two vacuum generating functionals are related by a simple integration. The implica- 
tions for renormalisability, namely that if Z ( J )  has already been made finite then 
Z"(J)  will not diverge, are evident. 

We will now give an independent verification of this fact along conventional lines. 
First of all, the result is no longer novel. The case of finite-temperature field theory, 
which we can identify with Euclidean field theory having Euclidean time compactified 
to a circle (consequently having normal Euclidean field theory on R4 as universal 
cover) has received some attention (Kislinger and Morley 1976, Tyutin 1981). In 
addition, the wide ranging paper of Bunch (1981) for d4 theory, where he shows that 
the divergences of renormalised perturbation theory depend only on local quantities, 
is applicable here, since any multiply connected space and its universal cover are 
locally identical by construction, implying that the renormalisation problem is the 
same in either case. 

We begin with the IT/ C CO (space-like slice of A? compact) case and for the rest 
of the paper we will be exclusively concerned with the Euclidean regime. The 
propagator for a massive scalar field on fi will have the general form 
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where the p', are the eigenvalues of the Laplace-Beltrami operator on A? and the 
summation in (7) is over a discrete set of p t  with the allowance for a single integration 
over a frequency variable (we assume the time variable is not compact). The integral 
for some Feynman diagram in the perturbation expansion will have the following 
form-where we highlight the structure of one particular vertex 

where 
r 

The Cz::::: coefficients are the generalisation to space-times of a compact space-like 
section of momentum conserving delta functions in flat-space Feynman diagram 
expansions and the analogues of the momentum integrations are the summations over 
the indices n. 

We now assume that the theory is renormalisable on A? so that it is possible to 
choose subtractions (labelled CT in (8)) to render all diagrams consistently finite. How 
such subtractions might be achieved is a matter for speculation. Certainly the Taylor 
series methods of conventional BHPZ theory break down, since we are dealing with 
a discrete variable, although in certain cases (e.g. finite-temperature theory to be 
described below) it may be possible to interpolate analytically the momentum variable 
between its discrete values and thus to apply Zimmerman's -t,"i" operators. Where 
this is impossible, other subtraction prescriptions such as zeta-function regularisation 
or dimensional regularisation come to mind. By assumption, such problems are behind 

We now recall that the fact that A? is a covering space for M implies that it i? 
possible to choose a basis for the spectral decomposition (7) of the propagator on M 
such that the automorphic representative of the propagator for M on A? is simply a 
subsum of (7) (Banach 1980a); those eigenfunctions of the Laplace-Beltrami operator 
which do not display the correct invariance properties under the fundamental group 
simply do not appear. 

This allows us to immediately deduce the renormalisability of the theory on M 
from that on A?. By the finiteness of the theory on A? all relevant sums such as (8) 
are absolutely convergent+ so that the corresponding expressions for their automorphic 
analogues, being simply subsums of expressions like (8), will also converge absolutely. 

+There  is a slight abuse of language here. In flat space, it is the momentum integrations which after 
renormalisation become absolutely convergent and in this respect the integrand (divergent expresison plus 
subtractions) is treated as a whole without regard to its structure as a sum of (individually divergent) parts. 
When we say a sum converges absolutely we mean that the moduli of individual terms may be summed 
in an arbitrary manner. This cannot be true of (8). Rather, we must treat the summand as a whole, 
whereupon the moduli of complete {no. . . nl, n, . . . n A }  contributions (indicated by large round brackets in 
(8)) can be summed arbitrarily if the subtractions have been done correctly. We retain the use of the 
'absolutely convergent' nomenclature for consistency with flat-space conventions for the purposes of this 
section only. 

us. 
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Having disposed of the /r/ < CO case we will now consider finite-temperature field 
theory, a specific example of the irl= CO case. A typical diagram in the covering theory 
will produce an expression of the following form where we highlight some particular 
momentum integration 

(10’1 

Here the q i  and qm are linear combinations of pi and other momenta, and P(q,) is a 
polynomial. The finite-temperature version of this is 

where ga is qa with p ,o  replaced everywhere by 27rnJP and 8 is the result of making 
a similar replacement in CT (an example of the analytic interpolation mentioned 
above?). Now the integrand in (10) is a rational function which is absolutely integrable. 
Therefore it must decrease sufficiently rapidly beyond its outermost singularity in 
momentum space, and will have convex modulus. In this region the integral absolutely 
dominates the sum (1 1) and so causes the large in, 1 part of the sum to cnnverge. The 
small In, I part of the sum converges by the observation that all the singulhrities of the 
integrand are non-real. So (1) converges and finite-temperature field theory is renor- 
malisable. 

For more general IT/ = 0;) situations we can speak with less certainty. It is clear 
that we will generally have to deal with the transition from a continuous to a discrete 
spectrum so we will be trying to deduce the finiteness of &f(An)k(n)  from that of 
Jdv(x)f(x). Unfortunately the convergence of either of these does not imply the 
convergence of the other in the absence of strong restrictions-even for entire functions 
f (x)S-so  that without exploring the structure of the given space-time and its propa- 
gators in detail, we cannot assert renormalisability. One’s feeling, however, is that 
such space-time structure would have to be extremely wild in some sense for renor- 
malisability to break down. 

This completes our renormalisability proofs apart from two further points. For 
the jrl< CO case we proved renormalisability of the autoporphic version of the theory 
in which there are lrl copies of the theory present on M, one in each translate of the 
fundamental domain, by a fundamental group element. This differs from the theory 
on A4 proper by finite rescalings of volume integrals and of propagators. Since the 
rescalings are finite, a finite renormalisation will take us from one version to the other 
and hence will not affect renormalisability. This is made even more plausible in the 
functional integral derivation since we can move between the two versions simply by 
adjusting the value of ti in (1) by a factor of lri. For Irl= 0;) the sitation is qualitatively 
different, as the automorphic version of the theory would involve an infinite number 
of copies of the theories coexisting on A? and so would yield divergent answers even 
if each copy was finite. Accordingly, in going from (10) to (11) we went directly to 
the theory on M, i.e. the cylinder in our case, avoiding the problems of the automorphic 
version. This qualitative difference will emerge in 9: 4 in another guise. 

t For a proof that this procedure is well defined, see appendix 1. 
t Consider J f ( x )  dx and Z, f (n )  for the following two entire functions: 

j l ( x )  = x 2  sin’ T X  
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The second point concerns the dependence of the counterterms on any dimensional 
parameters defining a fundamental domain on A?. The functional derivation suggests, 
and the analysis of Bunch (1981 and references therein) for ~ 7 5 ~  theory confirms, that 
the counterterms may be chosen to be independent of such global quantities. This is 
evident in our treatment of the IT1 <CO case since no such parameters are introduced 
in the passage from the covering to the automorphic theory (their presence being 
implicit in the spectral resolutions), and the finite renormalisation involved in the 
transformation to the theory on M involves only IT/, an integer. In the /r/ = CO case 
our treatment does not make this fact obvious since p appears explicitly. It is, 
nevertheless, the case that a finite renormalisation can remove any /3 dependence as 
shown by Tyutin (1981). 

We will now describe the remainder of the paper, which is of a rather more 
mathematical character than hitherto. 

Our attempt to mathematicise the functional derivation focuses on (6) and (1). 
The following fact is obvious. Given an integrable function of two variables Z(J“, J”) 
whose total integral is finite, the integral over one of them will be an AE finite function 
of the other (this is just Fubini’s theorem). Thus if we can express the vacuum 
generating functional in quantum field theory as an integrable function in a mathemati- 
cally valid way, the renormalisability proof will go through. There is a difficulty here 
though. Even quite innocent looking functional integrands can have unacceptable 
behaviour when an attempt is made to integrate them so that there is no guarantee 
that any Z ( J )  is integrable even if it can be shown to exist. 

On the other hand, there is a rigorous way of introducing the delta functional in 
(1) if the integral there is sufficiently well behaved. It is the method of conditioning 
which effectively restricts the degrees of freedom in the integrand to the ones required. 
Thus what can be done is the following. 

Gaussian integrals (free Euclidean fields) can be handled easily and it can be shown 
that a free field B can be obtained by conditioning (‘integrating out’ the relevant 
degrees of freedom) from a free field A if and only if AG = CA - GB (where Gx is 
the Euclidean propagator for the field X) is positive semidefinite (i.e. (f, AGf) 3 0 for 
all suitable f). Thus we might hope that interacting field theory being a hopefully 
‘small’ perturbation of free field theory would not disturb this situation too much and 
that GA - GB positive semidefinite would imply that interacting theory B could be 
conditioned out of interacting theory A.  This is, generally speaking, borne out by 
our findings. However, while we find that when the renormalisation algorithm for 
theory A is sufficient to renormalise theory B, then GA - GB 2 0 ,  the converse is not 
true; for in the certain knowledge that theory A is insufficient to renormalise theory 
B we occasionally find that, nevertheless, KGA - GB 3 0 for some finite K 2 1. Were 
the connection between conditioning and renormalisability as simple as suggested 
above, this would imply that a finite rescaling of the propagator of A would be enough 
to make theory B renornialisable according to the renormalisation prescription of A, 
a clear contradiction. In the following sections we demonstrate the above by specific 
examples. 

3. Generalised random processes and conditioning 

It is common knowledge that dx exp($ix*) does not converge properly at infinity and 
that this leads to great difficulties in constructing a Feynman path integral which is 
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mathematically valid and has a useful amount of predictive power. The same cannot 
be said for dx exp(- ix ' )  whose behaviour is impeccable. This latter integral, correctly 
normalised, can thus be multiplied by itself at will and gives the inspiration for the 
construction of Euclidean function integrals of Gaussian type, Because of the 
resemblance of the resulting expressions to what one finds in statistical mechanics and 
probability theory, the language of stochastic processes is commonly used. More 
importantly, the equivalence theorem of Osterwalder and Schrader (1973, 1975) 
shows that properly constructed Euclidean Green functions (Schwinger functions) are 
the analytically continued Minkowski Green functions of a corresponding Minkowski 
space quantum field theory, so that we lose nothing in studying the Euclidean version 
of a theory (most of our space-times from now on will be, at worst, simple subsets 
of Minkowski space for the sake of the added mathematical precision such a restriction 
enables us to attain), Below we outline those aspects of Gaussian random processes 
we will subsequently need. For more details see Gross (1964), Simon (1974, 1979), 
Gelfand and Vilenkin (1964), Minlos (1963), Yosida (1968) and Halmos (1950). 

A random variable is a map from a set X to the reals, which is measurable in 
some a-algebra 9 of subsets of X which, together with a positive measure g of unit 
total mass, turns X into a probability space. A random process is a map from some 
parametrising set T to random variables on X. A generalised random process is a 
random process for which the parametrising set is itself a real locally convex topological 
vector space T. An automorphic process is one for which T consists of functions 
satisfying an automorphic condition (25). 

Let us denote the generalised random process by 0, which from now \v will be 
linear; @ ( T ~  + C Y T Z )  = @ ( T I )  + ( Y @ ( T ~ ) .  Then if 7 1  . , . T ,  E 9, the expectations 
E((@(71), . . . , @(T,) )  E A  c W") = p ( ( @ ( ~ ~ ) ,  . . . , @(T,,))-'(A)) for measurable A c W", 
define the joint probability distributions of the { @ ( T , ) }  and satisfy the consistency 
condition that if { T ~ ~  . . . T',,,)) is a subset of { T I  . . . T,} then E((@(?il), . . . , 0(7 , , ) )E  
A c 52") = E ( ( @ ( T I ) ,  . . . , @(T, ) )  E A x R"-" c R"). The joint probability distributions 
define an integral for tame functions on T', the dual space of T. A tame function on 
F is a bounded continuous map to the complex numbers, constant on the cosets of 
T' under the equivalence relation (FI E Y'), F1 - F ~ @ ( ( F I ,  T I ) ,  . . . , (FI, 7,)) = 

((F2,71), . . . , (Fzr 7,)) for some finite set { T ~ }  c Y, Such a function f induces in the 
obvious way a function f on Y ' / N ( T I  . . . 7,) (with its natural R" structure), where 
N ( T I  . . . 7,) is the annihilator of the subspace of .T generated by {71 . . . T,,}, and the 
proclaimed integral is defined by 

Conversely, given such a family of consistent joint probability distributions (which 
is the normal starting point in practice) we can construct the generalised random 
process from which they derive. In particular we can do so by extending the integral 
(12) from tame functions to a more general class of functions on an underlying 
probability space as the following version of the Kolmogorov extension theorem 
shows. The proof is essentially an argument of Gross (1964). 

Theorem 1. Given an integral on tame functions on F given by a family of consistent 
joint probability distributions parametrised by finite subsets of T, there is a measure 
space (XI, 9,, g,) for which the joint probability distributions are those of a set of 
random variables on X I  and which extends the integral on the tame functions to L '(XI). 
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Proof. The tame functions with the supremum norm generate a commutative C* 
algebra d. By the Gelfand-Naimark theorem d is isometrically *-isomorphic to 
C(X,) where X1 is the compact Hausdorff maximal ideal space of d. The integral 
(12) is a positive normalised continuous linear functional on the tame functions and 
so extends by continuity to a positive normalised continuous linear functional on d 
which in turn is representable as a regular Borel probability measure p 1  on X1 by 
the Riesz-Markov theorem. Let 2, ( T )  be the representative on T / N ( T )  = R given by 
~ , ( T ) ( x )  = xC$,(x) ,  with 1 = I;, & ( x )  being a partition of unity on R, of a tame function 
~ " ( 7 )  on Y', havingimagexL(7) inL1(X1). T h e s u m x ' ( ~ )  = I ; , X ; ( T ) ,  beingacountable 
sum of measurable functions, is clearly a random variable on (Xl, gl, hl )  and the 
joint probability distributions of the { x ' ( T ) } ~ ~ ~  evidently coincide with those originally 
given, yielding a generalised random process { @ ( T ) } ~ ~ ~ ,  completing the proof. 

The above is one version, out of many possible constructions, of 'the random 
process indexed by Y and given by the { @ ( T ) } ? ~ ~ ' .  It illustrates the intimate connection 
between random processes and functional integrals and also the fact that, in general, 
the functional integral thus constructed is defined on a larger space X1 than Y'. This 
does not matter if all the analysis can be done using the properties of the space ,T 
alone, as is frequently the case when Y is a Hilbert space. In such cases the precise 
nature of XI is largely irrelevant. In other cases (one will arise in #4) ,  we would 
really like to know more about the measure space itself. For this we can use the 
construction of Minlos. 

Theorem 2 (Minlos). Let ,T be a nuclear space and the generalised random process 
given by the joint probability distributions of the { @ ( T ) } ~ ~ ?  make the integral on tame 
functions (12) weakly continuous in Y. Then there is a countably additive measure 
on Y' which extends (12) to integrable functions measurable in the a-algebra of Borel 
sets of the (weak) topology of T .  

For the proof see Gelfand and Vilenkin (1964), Minlos (1963). 

The above theorem shows that provided sufficient restrictions are imposed on F 
and on CP, we need not go beyond T' to construct our functional integral. 

Gaussian generalised random processes are given by positive quadratic forms on 
Y. Thus if C(T,  p )  is the bilinear form on Yof a positive quadratic form, then { @ ( T ) } ~ ~ ~  

are Gaussianly distributed with covariance C if 

with aij = C(q,  T ~ ) - ' .  Since for such a process 

E(@(Tl)...@(Tn)I=J @(71)...@(7n)dCL= pairings C C ( T i l r T i z ) * .  * C ( T I , - ~ , T ~ , )  (14) 

specifying C is equivalent to specifying the whole process. 
We now introduce the idea of conditioning. Let % be a a-subalgebra of 9 in the 

probability space (X,  9, p ) .  We define the conditional expectation of f~ L', with 
respect to 9, E(f l%),  as the %-measurable random variable satisfying 
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for all %-measurable g. We can construct E( f l9 )  more directly by noting that for 
f ~ L * , E ( f l % )  is the projection onto L2(X ,  9, p )  of f. Since L2 is dense in L' and 
llE(f19)lll s l l f l l l  this projection extends to the whole of L' by continuity. If 9 is the 
smallest a-subalgebra of 9 for which the random variables (O(7): 7 E T, T a closed 
subspace of 9) are measurable we call the E(f l%)  random variables conditioned on T. 

All of the above is probability theory. We have yet to make contact with physics. 
This essential step was made by Nelson (1973a, b) who showed that free Euclidean 
field theory could be constructed as a Gaussian random process and gave a sufficient 
(though not necessary) set of conditions for continuing back to Minkowski space. Let 
El be the Hilbert space of real distributions for which the inner product 

converges. The free Markov scalar field is defined as the Gaussian random process 
indexed by 3L1 with covariance given by the inner product (16). According to what 
was said above this is sufficient to specify the free field as a functional integral. An 
alternative construction, employing Minlos's theorem, would give the free field as the 
Gaussian random process on 9' (the space of real tempered distributions) with 
covariance given by the same inner product (16) except that we restrict the range of 
U and t' to 9, the real smooth functions of rapid decrease. Since (16) is continuous 
in U and t' in the nuclear topology of 9, the integral on tame functions it defines is 
weakly continuous and the conditions of Minlos's theorem are satisfied. We will use 
either of these constructions as convenient in the sequel. 

Both of the constructions possess many important properties vital in the construc- 
tion of non-trivial field theories; however, we will primarily need only one, common 
to both constructions and contained in the following circle of ideas invented by Guerra 
et a1 (1975, 1976, hereafter referred to as GRSI and GRSII). 

Suppose 9 is a Hilbert space and let H be a closed subspace so that .T = H OH' 
and consider the Gaussian random process indexed by .T with covariance given by 
the inner product ( , )  on 9. Then if { A l . .  . h n } € H  and {h: . . . h k ) ~ H '  we find 

w ( ( @ ( ~ I ) ,  . . . 9 @ ( h n ) ,  @ ( h i ) ,  . . . , @ ( h L ) ) € A  x B ; A  c R " , B  cR")  

= c L ( ( @ . ( ~ I ) ,  . . . , @ ( k ) ) E A ) p ( ( @ ( h ; ) ,  . . . , @ ( h i ) ) ~ B )  (17) 
and so 

E ( @ ( h l ) .  . . cP(h,)@(h;).  . . @ ( h i ) )  

=I @ ( h i ) .  . . @ ( h , , ) @ ( h i ) .  . . @ ( h i ) d p  

where the last expression in (18) is the expectation in the product probability space 
(XI x X 2 ,  .5F1 0 F 2 ,  dpH 0 d p  H A  1 formed from the probability spaces of the Gaussian 
random processes indexed by H and H', being the underlying probability space of 
the Gaussian random process indexed by H OH'. Thus an orthogonal decomposition 
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of 9 induces a split in the measure 

d p r = d p H  @ d p H L .  

On the other hand, given such a split in the measure and f E L' we find 

since the left-hand side of (20) clearly satisfies (15) for all F1 @X2-measurable g. 
Thus when there is a split, random variables conditioned on one subspace are obtained 
by integrating out the degrees of freedom indexed by the other. More generally, 
given a split in the probability space X = X1 x X z ,  d p  = d p  0 dp2  not necessarily 
subordinate to a split in an indexing space, equation (20) (with the subscript H I  
replaced by 2) remains a valid definition of the conditional expectation. The 
circumstances under which such a generalised split occurs for Gaussian random 
processes are delineated in the following fundamental result of GRSI. 

Theorem 3. Let 9 be a real locally convex space and let 41 and q52 be Gaussian 
random processes indexed by 9 with covariances C1 and C2. Then d2 can be obtained 
from q51 by generalised conditioning if and only if AC = C1 -C2 is positive 
semidefinite. 

Proof. If qb2 arises from 
we have 

by generalised conditioning then (since this is a projection) 

so that AC 5 0. Conversely if AC 5 0 and C2 2 0 then the Gaussian random process 
@ ( T )  = 42(7) + 4 * ( ~ )  indexed by 9 with covariance C1 = C2 + AC can be realised as 
the product process (X2  x XA, g2@ga, dpz  0 dpA)  where (XA, YA, dpA)  is the probabil- 
ity space of the process given by AC, completing the proof. 

We have now assembled enough apparatus to be able to make a comparison with 
the heuristic derivation of equations (1)-(6). First we rewrite Z ( J )  in a meaningful 
Euclidean form: 

Z ( J )  = d p  exp(-S;(@) +i@(J)).  ( 2 2 )  I, 
Here J E 3, d p  is the free field measure on a probability space X corresponding to 
a Gaussian random process @ indexed by .T and with covariance given by the 
propagator as in (16) and S i ( @ )  is a cut-of ipteraction which makes the measure 
exp(-ST(@)) d p  absolutely continuous with respect to dp. Under these circumstances 
Z ( J )  is the characteristic function (or Fourier transform) of the cut-off measure and 
is well defined since exp(i@(J)) is measurable. 

Given a direct decomposition of .T= T O S  such that J =  t ( J ) + s ( J )  where t ( J )  
and s(J) are the respective projections of J ,  we can define @r by @j-(J) = @ ( t ( J ) ) .  If 
C and Cr, CS are respectively the covariance on Y and its restrictions to T and S 
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with C = CT@Cs clearly C - CT 3 0 and so, by theorem 3, d F  splits and displays 
as a conditioned random variable. Thus we can write the theory on the subspace T 
in two ways 

JXT Jx (23) 
where on the left-hand side all quantities refer to objects constructed directly using 
T, while on the right-hand side the same symbols refer to objects obtained by 
conditioning in the theory constructed from F, This is clearly the constructive version 
of (l), the formal insertion of the delta functional into Z ( J ) .  

Now Z ( J )  is defined on F which is not, according to our constructions, a measure 
space. Even if it were, we have no guarantee that Z ( J )  would be measurable (although 
the two problems are obviously related) so we cannot implement the integration in 
(6) in a well defined way. However, if both of these were the case, it is evident that 
ZT(t)  would simply be the conditional expectation of Z ( J )  obtained by ‘integrating 
out S’. Although such a procedure is seemingly beyond present-day technology, its 
formal equivalence to (1) which is implementable (at least at the cut-off level) and 
the fact that it works directly in a formal, combinational way as verified in Banach 
(1980b) leads one to suspect that there may be a formulation in which (6) has a 
mathematically sound analogue. Such an ‘inversion of the Fourier transform’ would 
be particularly pleasing in the case of nuclear spaces where it would presumably 
provide a dual result to Minlos’s theorem. 

We must now say something about the removal of cut-offs. This of course is the 
heart of constructive field theory and is where the real joy, or pain, of the subject 
abides. It is an interaction-dependent business, each tractable model posing its own 
difficulties, and as such is beyond the scope of the present paper in which we seek to 
make more generally applicable statements. However, the following is relevant to us. 
In (23) all cut-offs are present and so all the convergence problems their removal 
creates are present too. Thus we have to confirm that cut-off removal commutes with 
conditioning in order to infer renormalisability. In view of the remarks we are going 
to make below and particularly in § 5 we have no reason whatsoever to expect that 
this will be a trivial exercise in general. Suppose, however, that we have obtained a 
cut-off-free Z ( J ) ;  then, were ( 6 )  a reality, conditioning of the theory without cut-offs 
would be a simple matter of doing the requisite integration. The apparent simplicity 
of such a procedure may be an indication of the difficulty of constructing (6 ) ,  and in 
any case we would still be faced with the task of checking whether or not the two 
conditioning procedures yielded the same result. 

Returning now to the cut-off theory we have the following basic theorem, again 
essentially due to results in GRSI. 

dgT exp(-Sf(@T) +i%-(t)) =ZT(f )  =Zr ( t ( J ) )  = dF  exp(-S‘r(@T)+i@T(J)) 

Theorem 4. (1) Given a direct decomposition F = T OS, ZT( t ( J ) )  as constructed in 
(23) is finite if  Z ( J )  exists. (2) Given two covariances C, C1 on T then a cut-off 
interaction yielding a finite Z ( J )  through (22) where d g  has covariance C will give 
a finite Z 1 ( J )  by conditioning on the product process { @ ( J )  =@*(.I) +@&(J), 
(XI X Xa, 9 1  0 SA, d p  I 0 dwA), CI OCA} where CA = C - C1 if CA 3 0. 

Proof. Both results are no more than statements of the fact that conditioned L’ random 
variables are integrable with respect to the original measure and so conditioning 
cannot make a convergent Z ( J )  diverge. A stronger result follows from Jensen’s 
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inequality, exp[-Sf(E(@lS1 0 X2))] G E(exp[ -Sf(@)]l910X2) (which applies in 
either case by change of notation) giving, by integrating over X1, Zl(0)  S Z ( 0 ) .  The 
finiteness of Z1(J) then follows since Z1(J) is continuous in J ,  completing the proof. 

The above result takes us as far as we might expect to go in search of a generally 
applicable result relating conditioning and renormalisability. In the limit of no cut-offs 
we generally lose the absolute continuity of the interacting measure with respect to 
the free measure and so cannot assert that the criterion on covariances given by 
theorem 3 is sufficient to deduce renormalisability from conditioning. Nevertheless, 
in the rest of the paper we explore to what extent the two are correlated by comparing 
the covariance criterion with known data from renormalised perturbation theory. In 
doing so we find some ambiguities which become less suprising in view of the following 
facts. 

In perturbation theory, a finite rescaling of the propagator has no drastic 
consequences for renormalisability; each primitive divergence simply picks up a finite 
factor and so a finite adjustment to its counterterm restores convergence. At a simpler 
level, introducing a perturbation proportional to the free action in a free theory 
introduces no divergences and one can sum the resulting geometric progression. On 
the constructive level however, the same is not the case. By theorem 3, the only 
multiples of a covariance for which the associated Gaussian process can be conditioned 
out of the process defined by that covariance are less than one. Thus if 1 < K < 00 

and we have KGA 3 GB, GA$ GB, the constructive point of view would say that the 
renormalisations for the theories given by G A  and GB are inequivalent while the 
perturbation theoretical view would be that they should be equivalent modulo finite 
rescalings. 

4. Multiply connected spaces re-examined 

In this section and the next, we apply the criteria deduced in § 3 to specific examples. 
First of all, we look at multiply connected spaces. In the Irl<m case suppose 
space-time is static, of the form A? = 5 x R where 2 is the compact universal cover 
of a space-like slice of M = C x R with R denoting here the time axis. We alter the 
signature of the metric to turn a into a Riemannian space and denote by A the 
corresponding Laplace-Beltrami operator on 15': (a). For m 2  sufficiently large 
( - A + m 2 )  will be a positive operator in the L 2  inner product and will have inverse 
G. We denote by XI(&?) the completion of C?R (a) (the real smooth functions of 
compact support) in the inner product 

(U, U ) - 1  =(U, Gv)r2 (24) 
and define the Euclidean scalar field of mass m on a as the Gaussian random process 
indexed by 5t?-l(a). 

and let 
%'El (a) be the subspace of 2Ll(A?) whose members satisfy 

Let {a ( y ) :  y E r} be a real representation of the fundamental group of 

f(yx 1 = a (Y  )f(x v y E r , v X E n i .  ( 2 5 )  

The projection Pa onto this subspace is given by 
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Pa is well defined since Irl <CO and so %?eal (a) is clearly non-empty. We define the 
automorphic version of the theory on M as the a_utomorphic process given by the 
process above conditioned on the subspace ( M ) .  That the covariance criterion 
is satisfied, follows from the general theory on conditioned Gaussian processes given 
in § 3, but we can see it more directly using the spectral representation of G. The 
spectrum of G is as described following (7) so we find 

where the ( f n }  are the Fourier components off in the basis of generalised eigenvectors 
of G and the summation includes the frequency integration. The automorphic covari- 
ance G, is simply given by selecting certain of the generalised eigenvectors and so 
(f, Gaf)L2 is given by a subsum of (27). Since all the terms in (27) are positive we 
thus have G 3 G, and the renormalisability demonstrated in § 2 is reflected in the 
relation between the covariances. 

We may point out in passing that our construction has resolved the self-adjointness 
problems raised in § 1 by remote control. For we note that the projection Pa can be 
written as an averaged finite sum of unitary operators U", unitary in both L2(A?) by 
the invariance of the metric under the fundamental group, and in %-I(*) by the 
invariance of the Laplace-Beltrami operator, 

If in addition 9 is the domain of sei€-adjointness of ( -A+  m 2 )  in L2(h?) we also have 
U a ( y ) : 9 + 9  and U " ( y ) ( - A + m 2 ) = ( - A + m 2 ) U " ( y )  on 9. Thus P a ( - A + m 2 ) =  
( - A + m Z ) P a : 9 "  -, Lz(k?) where 9, = P a 9  and Lz(b?) = PaL2(&?). Since Pa is a pro- 
jection, ( -A + m2)Pa is evidently self-adjoint on 9" c L z ( f i ) .  

This completes our discussion of the \I ' l<oO case and we note that the whole 
derivation was performed using only the Hilbert space properties of the indexing 
space of the Gaussian process, displaying the usefulness of the abstract construction 
of theorem 1. In the Irl= 03 case this is no longer possible as any function on h? 
satisfying (25) could not possibly belong to L2(& or %-l(A?)-qually, (26) is quite 
meaningless in this context. 

To see what might be possible in the Irl= 0;) case we will look at finite-temperature 
field theory again. Here A? = R4, M = S' x R3 and r is a group of translations along 
one of the coordinate axes. The model for the free field that we use will be the 
Gaussian random process indexed by the real Schwartz space Y(R4) with covariance 
given by the inner product (16) for U, U €9. The advantage of doing this is that we 
know that the measure space is precisely Y'. 

Now Y' contains closed subspaces SF of distributions satisfying the dual of the 
periodicity condition (25), by which we mean 

f ( h y )  = f ( a ( y ) h )  V h  €9 (29) 

with h , ( x )  = h ( y x ) ,  where r is the group of translations by integer multiples of p. Let 
us suppose that Y' = s'; 0 f; where f; is a complement of 3; and the direct sum 
is continuous in the usual weak*-topology of 9'. Then if we condition the process 
on the cr-subalgebra 0 f; where 9; is the cr-algebra of Bore1 sets in s';P we 
should be able to achieve our objective of obtaining the automorphic theory by the 
following procedure. 
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We have Y’ = s’&” Of&”. Now ( Y , Y )  is a dual pair so by 0 20.5 of Kothe (1969) 
we have that Y= pz 0s’; where 9; is the annihilator of 3;. 

Lemma 5. i=; = { h :  Z , , r u ( y - ’ ) h ( y x ) = O } .  

Proof. We know that Vx, Z.,ErSvxa(y) = ~ ~ ( * ) “ S ( X ~ - ~ ~ ) S ~ ~ S ~ ~ S ~ ~ E S ;  where Se is 
the delta distribution at 6; applying it to h E shows necessity. On the other hand, 
if f~ s’;, any weak*-neighbourhood of f  contains a C” function f i  satisfying (29) and 
acting as 

f i ( h ) =  J d4xfi(x)h(x). (30) 
w4 

By countable additivity, translation invariance, (29) and dominated convergence this 
is equal to 

which is zero if h satisfies the hypothesis. Lettingf, + f  completes the proof. 

We have the following two sets of isomorphisms; Y f / p r  -2: -S&a and 
Y/ fg  =gg =&; ==Si. Here $ is the space of C” automorphic functions satisfying 
(25), a function h  ̂ E S i  being identified with the unique (by lemma 5 )  function h E Si  
for which 

Sg is the space of sections of an associated vector bundle B with base space M 
constructed from a x E4 regarded as a product bundle via the standard construction 
(see appendix 2) which makes S i  isomorphic to the space of automorphic sections of 
A? X Ut, 3;; and S&” is the dual space of S i .  

If 6 is the Gaussian random process indexed- by Y given above, then we can 
construct an automorphic process & indexed by Sg, with measure space 3;; and a 
process 0 indexed by Sg, with measure space S&a on the multiply connected space 
M,  by giving the covariances 

E(Wh ~ M ) @ ( ~ z M ) )  E(&Li)&ld) = E(&h i ) & ( h J )  (33) 

where hiM is the section identified with h:, which is itself related to hi by (32). 
Identifying 3; as a model of the dual space of Sg, by restricting its action to a 
fundamental domain as in (31) and noting that the induced topologies on &; and S i  
are nuclear, we confirm that the measure spaces for 6 and 0 are as given and we see 
that conditioning on 9; 0 p; (the a-subalgebra for which the { 0 ( h ) :  h E S ~ }  are 
measurable) yields a well defined automorphic process 6, the pullback to the covering 
space of the process 0 on M, providing the covariance inequality is satisfied. 

Sadly, this is not the case. To see this we must examine the complementation 
theory of 3;. Since (,Y,.Y’) is not only a dual pair, but a reflexive pair, the complements 
of &“ are in one-to-one correspondence with complements of pi. Let x o  be the 
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coordinate axis along which r acts and let p o  !e the corresponding Fourier transform 
variable. Let 0; be the Fourier transform of T i  and denote by F Fourier transforma- 
tion in general. 

L e m m a  6. 
where 

= { f ~  F Y :  f ( p o  = 2 m / P  + A  ( a ) )  = 0)  

0 if a is trivial 

Proof. We have V x  E R4 

as distributions. Taking the Fourier transform, 

C N  + N  

F( N+cc lim - N  1 ( * 1 ) " S ( x O - n ~ ) S x 1 S x 2 S . ~ )  = N-m lim -N ( * l ) " F ( S ( x o - n ~ ) S , , S x 2 S , , )  

+ N  

where 

In the limit this is equal, as a distribution, to 

eipx( a[ P o -  (?+A ( a )  )I1 , (37) 

By the uniqueness of the Fourier transform, this can only annihilate h E FY for all 
x E R4 if h vanishes on the support of the factor in curly brackets. This condition is 
evidently also sufficient, completing the proof. 

Knowing this, it is easy to construct some complements of Qi. Suppose for 
convenience that a is trivial. 
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where k ( p )  E Q;" as a consequence of the fact that the term in large round brackets 
in (38) is in FY-a property which is easy enough, if rather tedious, to verify. This 
yields a complement of QFv and by inverse transform, one possible pp. A similar 
construction would work for non-trivial a. 

Example 8. Let $ c ( p ~ )  =exp{Cpi[pi -(27r/3p - E ) * ] [ &  -(27r/3p)2]-'} for Ipol < 
27r/3p, zero elsewhere; and 0 < E < 27r/3P. Then for any A > 0 and n E Z we can find 
C such that 

Furthermore, for A E[m2, CO), C lies in a compact subset of R. We now construct 
{&,(p0) ,  $;,,(po} as follows: (i) &,,(po) = $ , (po )  with C chosen so that (39) holds 
with n = O  and A = ( p 2 + m 2 ) ;  (ii) for n 3 1 ,  4 n . , ( y 0 ) = [ $ c ( ~ ~ - 2 ~ n / P ) +  
$ , (pO+.2~n/p) ]  where we choose C such that (39) holds with A = ( p  + m  ) and n 
agreeing with the subscript of &,; (iii) $;, ,(PO) =sgn (po)$n,r(po)* Then in a "-mer 
analogous to (38) we have for h E FY 

33 33 

h ( p ) = (  n 1 =O (Reh(n,p))lLn,,(pd+i n = l  ( I m h ( n , p ) ) 4 ~ , , ( p o ) ) + k ( p )  

z h + ( P )  + k ( p )  (40) 

where, this time, the checking that h + ( p ) E F Y  is somewhat more tedious than in 
example 7 due to the p dependence of $n, , (po) .  The complement RZiV of QF" that 
this procedure yields has the advantage that iff, g E RZ" then 

i.e. that the restriction of the covering space covariance to Ri'" agrees with the 
periodic covariance given by the operator GF'. If only we could condition onto RF" 
then our entire objective would be achieved. But the argument fails at this last step. 

Theorem 9. Let a;'" be any complement of a:". Then the covariance G o - G ~ ,  
where Ga is the restriction of Go to dFv, is not positive semidefinite. 

Proof. Vectors in 2:' are labelled by their values on H x R3, the set on which all of 
QF' must vanish. Choose h which is non-vanishing on { 0 } x R 3  and zero on 
(Z\{O})XR3. Now consider gA(p) =q50(Apo)h(p) ,  A 2 1, where d o  is as in example 7. 
Since it agrees with h on Z x R3 it must differ from h by a vector k A  ( p )  in QFv: 

g A  ( P )  = q5obVo)h ( P I  = h ( P )  + k ~  ( P I .  (42) 

Now there is some point p E {0} X R3 where h ( p )  # 0. By continuity, there is a ball b 
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of non-zero radius r centred on p wherein h ( p )  is also non-vanishing. By choosing 
A > 2 ~ ( 3 / 3 r ) - '  we find 

a contradiction which completes the proof, 

The failure of conditioning which we have just demonstrated is vividly illustrated 
by a virulent incompatibility between the covariances for the covering theory and the 
automorphic theory. By letting A +.CD in the construction of theorem 9 we see that 
(F-'gA, G8- 'gA)  + 0. On the other hand, since 40(0) = 1, (F-'gA, G T F ' g , )  remains 
constant, showing that there is no 1 < K  <CO such that KGosGb"'. Conversely, for 
any 0 f h E fr we clearly have (h ,  Gl;"h) = 0 so that we cannot arrange KGF' 2 Go 
either. All of this is despite the known renormalisability of finite-temperature field 
theory which we showed in § 2.  

Remark. Lest the.reader be tempted tp think otherwise, we note that there is no 
reason other than convenience for choosing the {&, 4;} to have disjoint supports in 
constructing complements of C?;. In general this will not be the case (even if it were 
it would guarantee nothing), and vigilance has to be exercised. For example let 
x f l ( p o )  = &(PO) for 1p0l n, 1 for lp01 E [n, n + 11, and 4,,+1(p0) for /pol 5 n + 1. While 
each x f l ( p 0 )  is itself innocent enough, the family (x,,} cannot yield a complementation 
of QF' in one dimension. (Hint: try to decompose qho using the kn}, (4;) and CIFv.) 

5. Boundary-value problems 

In this section we will examine the connection between boundary-value problems and 
conditioning and compare these data with known facts from renormalised perturbation 
theory. Some of the following is an elaboration of results in GRSI, GRSII and Robinson 
(1971). This is unavoidable, if only from the need to establish notation. The formula- 
tion of the finite-temperature problem as a periodic boundary condition problem 
yields yet another approach to the material treated in the previous sections and again 
produces different results. 
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Our scenario in this section is the model of the free field given by the Gaussian 
random process indexed by 2L1. The first fact we need, and the key to much of what 
follows, is the pre-Markoff property of X1 (Nelson 1973b, GRSI). Let e, be the 
projection in %-I onto the subspace supported in the closed set C and p ,  = 0 -e,. Let 
A be open in R4. 

Proof. Let h be the projection off E exZ-1 onto e,,%'-l. Then since C? (A") c 
we have for g E C," (A") 

(h, g)L2 = (h, (-A + m 2)g)-l = (f, (-A + m 2)g)-l = (f, g>Lz = 0 (45) 

since f = 0 as a distribution on C?(A"). Thus supp h n A" = 0 and h ~e,,,%-, 
completing the proof. 

We note that since K1 contains delta distributions concentrated on hypersurfaces of 
codimension one, as can be checked from (16), the above result is non-vacuous. 

Lemma 11. I f f   pi%-^ then supp f C A '  

Proof. Suppose X O E  A was in supp f. Then there would be a g E C," (U(xo)) where 
U(xo) is a neighbourhood of xo contained in A, with 0 # (f, g)L2 = (f, (-A +m2)g)- l .  
But (-A+m2)gEe,i%-l, so that xoksupp f completing the proof. 

An important consequence of these two lemmas is the following theorem (cf GRSI). 

Theorem 12. There is an orthogonal decomposition 

Proof. SinceaA= A ' n ~ i w e h a v e e , ~ % - ~  =eA~%-lne&?'-l. Hencep,,,%-l =pc%-l@ 
p i 2 - 1 .  Now is orthogonal to pA%'-l since any non-zero image of a projection 
from either to the other must lie in eaA2t-i by lemma 11 and the pre-Markoff property; 
this is impossible completing the proof. 

We now examine the dual space of As is well known, this is the space %+I, 

the closure of Y in the inner product 

(f, g)+ l=  d4x [Pf) * (Vg)+m2fgl. (47) 

More precisely %+I consists of those distributions which are in L 2  and whose first 
derivatives are also in L2. The duality isomorphism %+1 + &9-1 is just (-A + m 2 )  where 
-A has its distribution-theoretic meaning and the inverse is (-A + m2)-'  = Go. Let 
e , , p ,  have the same significance in %+1 as they have in and let V' denote 
( -A+m2)- 'Vc%+l  for a closed subspace V C X - ~ .  

Remark. eaA%+l= 0 since aA has measure zero. 
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Lemma 13. 

(ea,,X-l)'={fE X+1: ( - A + m 2 ) f =  0 as a distribution on AuA"}. (48) 

Proof. LetfE(ea,,Xl)' a n d g E C ? ( A ~ A ' ~ ) ) , t h e n ( f ,  g)+l =((-A+m2)f,g)L2=Osince 
( - A + m 2 ) f e  e8,,X-l, completing the proof. 

We define HA (A) to be the closure of C ;  (A) in the inner product (47). 

Theorem 14. There is an orthogonal decomposition 

Proof. We have that Hh(A) is orthogonal to Hh(A") since suppHh(A)n  
suppHh(A")=aA which is of measure zero. Let f be orthogonal to HA(A)O 
H;(A") ,  then if gEC;(AuA") we have O=(f ,g)+l=((-A+m2)f ,g)Lz so that f e  
(eaAX-l) t  completing the proof. 

Corollary 15. (i) HA(A) = (p,,4V-.l)'; (ii) p , , X 1  is the closure of (-A+m2)C:(A) in 
2 - 1 .  

Proof. HA(A)  is the closure of C?(A)  in %'+1 and (-A+m2) is the local duality 
isomorphism. Therefore the closure of (-A+m2)C? (A) in  is a subspace of 2L1 
supported in and orthogonal to and therefore also orthogonal to ~ X X - ~ .  
It is thus contained in pA%'-, and equal to pA,%'-l since its orthogonal complement 
in pA2i?-1 consists of distributions f for which 0 = ( f ,  (-A+m2)g)-l = ( f ,  g)Lz any 
g E C? L4); whence f e ea,\,?-1 which implies f = 0 completing the proof. 

So we have decomposed both and El into direct sums of three orthogonal 
subspaces. Why bother? The answer is that (47), regarded as a bilinear form on 
C? (A), is just the form of the operator ( -A+ m 2 )  r (7: (A) so Hh (A) is the closure 
of the form domain and determines the Friedrichs extension of (-A+m2j 1 C," ('4) 
which is just (-A? + m') ,  where AY is the Dirichlet extension of A 1 C? (A). Con- 
sequently, the restriction (-A+m2)-l r p A t X 1  = G? is just the Dirichlet propagator 
for A and we conclude that the Dirichlet theory on -4 can be obtained by conditioning 
on the subspace p.A~%'-l c XI. 

Having settled the Dirichlet problem, we move on to some other self-adjoint 
extensions of -A r C? (A) of interest to us. The first extension we consider is the free 
extension which is defined by specifying the propagator Go r e;iX-,. Thus 

G! = Gf: @GO r ea,\%'-l (50) 

and the domain of ( - -A?+m2) is clearly G i ( L 2 ( A ) ) .  The boundary condition for this 
operator is as complicated as the definition as a restriction makes its propagator 
simple. Generally it is 

aflan = Lf on ai4 ( 5  1) 

where X,, is a non-local pseudo-differential operator, even in the simplest case of A 
a half-space, as discussed in GRSII. As in the Dirichlet case, the free theory on A can 
be obtained by conditioning on eiX-1.  
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To define the Neumann problem we take the closure in the quadratic form (47) 
of the space C"(A) and appeal to the standard result that a closed semibounded 
quadratic form yields a unique self-adjoint operator on a subdomain of the form 
domain (Reed and Simon 1972). That thi, is in line with our intuitive conception of 
the Neumann problem, can be checked by taking 

f~ C"(K) c Q(-A?) and g E C"(A) nD(-A?) 

whence by integration by parts, 

The left-hand side of (52) is the Neumann quadratic form, and the volume integral 
on the right-hand side gives the action of the operator that the form defines, which 
must be equal to the left-hand side. Thus the surface integral must vanish and hence 
g must satisfy the usual Neumann condition 

aglan = 0 on aA. (53) 
If we add the form 

i, , f ag  (54) 

to the Neumann form, where (+E C"(dA), then Robinson (1971) has shown that it is 
a relatively bounded perturbation of the Neumann form and hence determines a 
self-adjoint extension of ( -A+m2)  1 C? (A) by the KLMN theorem (Reed and Simon 
1975). A similar manipulation to (52) shows that the corresponding boundary condi- 
tion is (for g E C"(A) nD(-A?)) 

ag/an = u g  on dA. ( 5 5 )  
If A is box-like, i.e. A = {x : /x,j <L,/2}, then we can take the closure of C," (A) in 

f ( x )  = f ( x  +L,iz), P(a) f ( x )  = ~ ( a ) f ( x  + ~ , i , )  VP(a)  (56) 
whenever both x and x +L,?, are in ail, where is a unit vector in the ith direction. 
This yields the extension ( - A f ; + m 2 )  with periodic boundary conditions on A. We 
remark that antiperiodic and mixed problems, periodic in some directions and antiperi- 
odic in others, may be treated in an analogous fashion. 

Taking the Gaussian random processes indexed by C? (A)  with covariances G f  
or by the closures of L 2 ( A )  in the inner products given by the G:, i.e. the inverses 
of the self-adjoint operators ( -AT+ m 2 )  for the various different boundary conditions 
treated above, we get models for the free field with X-boundary conditions. There 
is a lattice of inequalities for the various G? with obvious implications for conditioning 
and it is to this that we now turn our attention. 

Consider two disjoint open regions A I ,  A2 with not necessarily disjoint closures 
and let A = (XI U I%)'. Denote the Neumann form on A by r? and similarly for A,. 
Then each tf" extends to a form on L 2 ( A )  =L2(A1)OL2(A2) by prefacing it by a 
projection onto the appropriate factor. We have 

(47) where C: (A) is the subspace of C"(x) whose restrictions to ah satisfy 

since the right-hand side of (57) contains functions discontinuous across aA, n a&. 
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The right-hand side of (57) determines a self-adjoint operator which is an extension 
of (-AYl + m 2 ) @ ( - A Y 2 + m 2 )  and which is, therefore, equal to it since (-AYl + m 2 ) @  
(-Ar;',+m2) is already self-adjoint. From the form domain inequality (57), we obtain 
the operator inequality (Kato 1966) 

( 5 8 )  ( - A y +  m 2 )  3 (-ATl + m 2 ) 0  ( -Ay2 + m 2 )  

which yields 

G? s GTl OG';',. 

Letting A2 = Aio we find (since GE4 = Go) 
(59) 

so that for any .I we have 

G: s G Y .  (61) 

t? 3 t?l + f?, 

G? aG?,OG?,  (63) 

If we repeat the above for the Dirichlet forms we find conversely 

(62) 
since functions on the right-hand side of (62) must vanish on &Al n aA2 whence 

and 

G ? S G F \  (64) 

2 t;* (65) 

consistent with our previous derivation. If a l ( x )  a1a2(x)l for all x E 8'4 then clearly 

whence 

Also 

X E B  \ 

and if ~ ( x )  > 0 

r € & i  

so that for a ( x )  3 0 

G? s G'; S G ? .  (69) 

G? SGP, S G ~ ,  (70) 

Finally, for box-like '2 consideration of the domain of r', indicates that 

Thus we have established the lattice 
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where the covariance at the tail of an arrow dominates the one at its point. Generally 
speaking 'most' self-adjoint extensions of ( -A+m2)  r C," (A) arising in practice give 
rise to covariances which dominate the Dirichlet and are dominated by the Neumann 
extensions but neither dominate or are dominated by each other. Thus the middle 
column of (71) is the most populated one and of the 'classical' boundary problems 
(i.e. D, N, U, P) only the Dirichlet problem arises by conditioning on a subspace of X1. 

We now restrict our attention to box-like A and Gf obtainable by the method of 
images, to establish some inequalities of the form K A  GA 2 G,: on suitable domains. 
We can achieve most of them in one bound, . . and here it is (theorem 111.4 of GRSII). 

X,Y x 

Theorem 16. For box-like A, K2X exists for X = D, P, N. 

Proof. The case X = D is trivial by (64). For the other two cases, we can write 

G : = G J U ~ ; '  
n 

where the U t  are the unitary translation and translation-reflection operators which 
realise G? via the method of images. Thus for f E e x X 1  we have 

( f ,  G f f ) L Z = C ( f ,  U ~ f ) - ~ = C ( f , e x U ~ e C e ; i f > - ~  
n n 

where A, is the nth 'translate' of A as specified by Us;'. By a further result in GRSI 
there is a bound Ilexexnll = O(exp(-m dist(A, A,,))). Thus we have 

(74) (f, G ~ ) L ~ S C  IkxexnlI IlUZll l l f l l ~ ~  =Kllflltl =K(f, G;f)~2 
n 

completing the proof. 

Corollary 17. G? is a bounded quadratic form on for X and A as above. 

Proof. Equation ( 7 4 ) .  

Proposition 18. For X ,  Y, A as above, 

Proof. To show (75) it is sufficient to show that (f, (Gf-GI)g)L2 = 0 for all 
g EpAfX-1. Now ( -h+m2)C?(A) is dense in pA2.X-1 (corollary 15) and G;-G,y 
satisfies ( - A  + m2)(GT - G I )  = 0 as a distribution, and is furthermore symmetric. So 
we have for g = ( - A + m 2 ) h ,  h E C? (A) 

(f, (G? -CI)g)L2= (f, (G?-G,y)(-A+m2)h)L2= (f, (-A+m2)(G:-G,:)h)L2 = 0 

(76) 
completing the proof. 

Corollary 19. For X ,  A as above 

G? = G?'oc;: 1 
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Proof. Set Y = D in (75) and note that G f :  r e,,,X-, = 0. 

The above conclusions considerably clarify the relationship between the various 
G?, particularly for X= N, D, F. 

There remains the question of the nature of G! 1 e J A X l .  For reasons that are 
explained in appendix 3 this is, in general, a very thorny problem, the basic reason 
for this being that while G l  is an image sum over Go, the reverse is not the case. 
However, in the case of finite-temperature field theory, where dA is particularly 
simple, consisting merely of { x  E R4: /xoI = i p } ,  a complete answer can be given. In 
fact we have the following theorem. 

Theorem 20. If A = { x  E R4: lxol < $} there is an orthogonal decomposition of e a A X 1  

eJ,,%Lp-l = A O A ~  (78) 
and GP\ satisfies: 

(1) G! ~ A = o .  (79) 
(2) There exists K?F such that 

P F  P K,< G,, r A%G! r A' 

For the proof see appendix 3.  

5.1. Summary 

Let us summarise what we have derived for N, F, P, D boundary conditions on box-like 
A (these conclusions are generally untrue for arbitrary boundary conditions and 
arbitrary A). Firstly, all the G f  coincide on p,,,X-l and differences only exist on 
e a , , X l .  On ea,,9i-1, G: and G! provide equivalent norms by (61) and (74), G? is 
zero and, at least in the finite-temperature case, G I  splits e,,,%-, into the orthogonal 
sum of A on which it vanishes and A' on which it provides a norm equivalent to that 
provided by GT or G! by (74) and (80). We remark that (74) and (80) contrast 
starkly with the analogous conclusions derived in § 4 for the periodic problem posed 
in a different setting. 

The implications of all of this for conditioning and hence for renormalisation are 
evident. Thus all of the G f  field theories can be conditioned from the Neumann 
problem or multiples of the free problem. On the other hand this does not apply to 
the Dirichlet or periodic problems which each annihilate a non-zero subspace of 

Allowing ourselves the freedom given us by the existence of the K?Y, we 
derive the chain 

N - F + P + D  (81) 
where an arrow points from a field theory to another which ought to be renormalisable 
by the same techniques as the first. 

How does this compare with renormalised perturbation theory? The most complete 
treatment of interacting field theories in the presence of boundaries known to the 
author is that given by Symanzik (1981) who discusses the N and D problems. He 
finds'that for the D case no specific surface counterterms need be included in the 
action, for a smooth boundary. This agrees with the implications of conditioning in 
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so far as the D covariance can be conditioned from the imbedding theory. For the 
N case surface counterterms are required, and this agrees with the fact that G? cannot 
be conditioned from Go although it disagrees with the fact that Gj;’ may be conditioned 
from K2NGo. The reason why this should be the case is not presently understood 
although it may be linked to the fact that there are A (not box-like) for which there 
is no finite K F , . ~  (see GRSII). 

One clear consequence of the chain (81) is that N counterterms ought to make 
finite the F theory. Since F boundary conditions are not in general use it is not possible 
to simply compare this prediction with known work. However, since GX is perfectly 
easy to write down in momentum space, and the restriction to A is feasible in 
configuration space for sufficiently simple A, calculations can, in principle, be done 
and the prediction tested. That the result should require no surface counterterms at 
all (as we would expect from conditioning) is too much to expect, is shown by an 
early paper of Stueckelberg (195 1) who in effect does a F boundary condition problem 
in Q E D ~  and finds surface divergences. The reasons for this are also unclear from a 
conditioning point of view. 

For the P case the situation is rather more straightforward. We know that renor- 
malisability follows from that of the covering space theory as demonstrated in § 2 and 
that the perturbation theory expressions do not distinguish between the theory factored 
from a covering space and its representation as a boundary value problem, the 
difference being chiefly one of domains and therefore only apparent at a more 
mathematical level than perturbation theory. This is strikingly illustrated by the 
existence of the inequalities K?yGF z G,: for X, Y E  {P, F} on various subspaces of 
ealiZ-, in the boundary value formulation, but their non-existence in the = C O  

automorphic formulation with domain 9, the failure being attributable to the pathology 
of the Irl= CO situation, being absent if Irl< 00. 

6. Conclusion 

From the previous four sections, and particularly from the paragraphs immediately 
preceding, we deduee that renormalisability and the implications of conditioning are 
broadly speaking in agreement. The theories which require surface counterterms 
appear higher up the ‘conditioning chain’ (81) than theories which do not. In particular, 
the closest agreement between conditioning and renormalisability has been obtained 
in precisely the place where it first suggested itself-namely multiply connected spaces 
with finite fundamental group (Banach 1980b). 

Clearly though, conditioning is not the whole story where renormalisation is 
concerned, as evidenced by the discrepancies alluded to at the close of § 5 ,  and in 
this regard two main areas for further work suggest themselves. The first would be 
a BHPz-type of approach where one would attempt to derive a general result of the 
form ‘conditioning plus ‘something else’ implies that renormalisability carries over 
from one theory to another’. There could well be a problem here since conditioning 
is not a concept that naturally finds a place within the circle of ideas normally associated 
with BHPZ. 

Secondly, one could pursue the constructive work contained in this paper to its 
logical conclusion by taking a typical theory of interest, say P ( 4 ) 2  defined on S’  x [w’ 

and demonstrating that the conditioning could be taken onto S’ x R’ (with an S’ of 
say half the circumference of the first) in the limit of cut-off removal. This could be 
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done in both the automorphic and boundary value formulations and the results 
compared. The author anticipates that such a programme could be carried to a 
successful conclusion using current constructive techniques and could well shed light 
on the tempting prospect of 'inverting the functional Fourier transform' referred to 
in § 3. 

Unfortunately, as is obvious from the first page of this article, these matters must 
await the interest of other investigators. 
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Appendix 1. 

In order to show that the analytic interpolation of § 2 is well defined we must prove 
that a rational function on C n  (i.e. a ratio of multinomials) is uniquely specified by its 
values on x Z'. 

Theorem A l .  Let {Ri I,.,,, ( z ~ . . . z , - ~ ) }  be ratios of multinomials Nil . , . i , /Di  ,... (, on C"-'. 
Then there is at most one rational function R = N / D  on C" whose restrictions obey 
R ( 2 l . .  . 2,-,, i l . .  . i r ) = R i  , , I ,  ( 2 1 . .  . z,-,).  

Proof. Suppose there were two such functions R = N ' / D i ,  i = 1,2. Consider the set 
of singularities of R{+ It is the set DG; (0) which is clearly of Lebesgue measure zero. 
The set X = u{{i}}Di; (0) being a countable union of measure zero sets is also of 
measure zero and hence contains no balls. Therefore we can choose a countable set 
{ x i } ,  everywhere dense in C"-', disjoint from X. By hypothesis 

(A l . l )  2 R 1 ( x j , i l . .  . i , )=R ( x i , i l . .  . i , ) = R i  ]... i , ( x i ) .  

Regarding R'(x, ,  z , - ~ + ~  . , , z,) as functions of z,-,+~ only, they are rational functions 
which, in one complex variable, have the unique factorisation property 

R ' ( x , ,  Z n - r + l ,  i 2 .  . . i r ) = N ' ( x l ,  Z n - r + l ,  i 2 .  . . ir ) /D'(xJ,  ~ , - , + i ,  i 2 .  . . i , )  

where N' and D' are polynomials with no common factor. Let 

(A1.2) 

S'(x, ,  zn-,+lr i 2 . .  . i , )  

= R i ( x j , z f l - , + ~ ,  i 2 . .  . ir)D1(xi,z , ,-r+l,  i 2 . .  . i , )D2(xJ ,zn- ,+ l ,  i 2 . .  . i , )  (A1.3) 

then S' are polynomials in z , - ,+~  agreeing on Z. By a corollary to Carlson's theorem 
(Titchmarsh 1932, § 5.81) S' = S2 everywhere, hence R'(z1 . . . z,-,+I, i 2 .  . . i , )  = 
R 2 ( z 1  . . . z , - ,+ ] ,  i 2 .  . . i , )  everywhere in xi x where they are defined and since the 

in  @ n - r + l  x Zr- '  where they are defined. 
{xi)aredenseind="-', R1(z l . .  . z,,-,+~, i 2 . .  . i,) = R 2 ( 2 1 . .  . z,-,+I, i 2 . .  . i,)everywhere 
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Now repeat the argument by finding a dense set {x i }  in that avoids all the 
singularities of the extension of the {Ri , , , , i , ( z l  . . . z ~ - ~ ) }  to the { R i z . . . i , ( z ~  . . . Z n - r + l ) } =  

{R ' ( z  1 . . . z ~ - ~ + I ,  i 2  . . . i,)} and deriving a unique extension to Q:n- r+2  x Zr-2.  A further 
( r  - 2) repetitions of this algorithm yields the uniqueness we seek, completing the proof. 

Let i@ be the field of rational functions on C" and 9% the field of Z' parametrised 
sets of rational functions on C"-' possessing at least one extension to 28. Then by 
theorem A l ,  the restriction map 8: $8 +%,, 8(R)  ={Ri1, . . ' , }  is an isomorphism so that 
any operator T on &! has a unique image on %!r namely 8T8-l. This in particular 
applies to the Zimmermann -fpdiy) operators, enabling us to renormalise on S' x R3 
if we can do so on R4. 

Appendix 2. 

We describe here the connection between the automorphic formalism and the bundle 
theoretical approach to fields on multiply connected spaces pursued by Isham and 
co-workers. Remarks similar to those which follow have been made in Chockalingham 
and Isham (1980). Of particular note in this regard is the convention in automorphic 
function theory of using left actions of a group on a topological space in contrast to 
the convention in bundle theory of using right actions (e.g. Husemoller 1966). Since 
we are more concerned here with the automorphic picture, our convention will be 
the left action. The bijection g + g-' of course turns any left action into a right action 
and vice versa so we lose nothing either way. 

Theorem A2. Let fi be the universal cover of a multiply connected space M with 
fundamental group r, covering projection p : fi + M,  and a (r) be a representation of 
r in a vector space V. Then there is a vector bundle (B, T,  M )  such that its cross 
sections are in bijective correspondence with V-valued functions on fi satisfying the 
automorphic condition f(yx) = a ( y ) f ( x ) .  

Proof, Consider the product bundle 6 = (A? x V, 6, fi) and define a left r-action on 
it by y :  (2, U)+ ( y f ,  a ( y ) u ) .  The coset of (2, U )  under this action is denoted [x', U ]  and 
we define B to be the collection {[x', U]}. We make B into a bundle over M by giving 
it the quotient topology and equipping it with the projection map T :  B +M, ~ ( [ x ' ,  U]) = 
p ( x ' )  = x which is manifestly well defined. B becomes a vector bundle under the scalar 
multiplication and addition laws in T-'(x); a[?, U ]  = [x', aul, and 121, ull+[x'2, u2]=  

[fl, u 1  f a  ( y - ' ) u 2 ]  provided .f2 = yf l  E p-'(x), which can easily be checked to be well 
defined and continuous. Let l l : 6 + B  be the quotient map. Then we have 
l l - ' ( r - ' ( x ) )  = U p E P - + + ~ 7 j - ' ( x ' )  and since ll-'[2, U ]  contains precisely one point out 
of each of the {G-'(x''): x " ~ p - ' ( p x ' ) }  we see that the fibres of B are isomorphic to V 
by mapping [x', ~ ] + ( x ' ~ ,  a ( y ) u ) + a ( y ) v  where f0=yx'  for some fixed f o ~ p - ' ( p 2 ) ;  
This enables us to construct local trivialisations of B, I,LI fi by choosing open sets fi c M 
satisfying fi nUe+yE,- y f i  = 0 ,  p ( f i )  = U and giving the isomorphisms 7j-'(fi) = 
f i x  V= U X  V 'ii T-'(U). Given two open sets U1,  U 2 c M  which have two 
open preimages fil, f i 2  c fi satisfying the condition just mentioned, we construct the 
overlap functionon UlnU2, g f i , i r , ( x ) = r L ~ ~ ( x ) ~ r L f i z ( x ) = a ( y ( x ) )  where y(x)issuch 
that yXI2 = with ii being the unique points in M such that fi E a . a n d  p(x'') = x. The 
set of all such U and their associated 9 fi and g 0, f i z  gives a coordinatisation of B. 
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Let q5 be a section of B and suppose q5(x0j = [x‘o, U]. Then if {(&, ui): i = 1 , 2 } c  
[2o, U ]  there exists y such that y21 = 2 2  and u2 = a (y)ul thus q5 determines an automor- 
phic section f of 6 by f (yf l )  = f (22) = u2  = a (y)ul = a (y)f(Zl) and since 6 is a product 
bundle, f is a V-valued automorphic function on h?. Conversely, since an automorphic 
function consists solely of equivalence classes of the quotient map ll, it determines a 
section of B completing the proof. 

Appendix 3. 

In this appendix we explore the nature of G I  1 eJA,%-1 in greater depth for box-like 
A. Let aA: = a A  n { x  E R4: x ,  = &} be the kith face of ail.  Clearly aA: is closed, 
8’1 = Ul,* aA:, eJ1:z-l  is a closed subspace of 2 - 1  and El,* eJ\:,%-l c e J 1 2 - 1 .  

Consider a class P of partitions of unity in R4, {cpl}, having the following properties. 
(1)  {q l }  is locally finite and each cpI  has compact support. 
(2) For each ‘corner’ of ad,  the non-empty intersection of four distinct &I:, there 

is a cpl whose support contains no other corner and such that cpI = 1 in a neighbourhood 
of that corner. 

(3) For each ‘one-edge’ of ah, the non-empty intersection of three distinct ah:, 
there is a subset of the { c p l } ,  whose supports intersect no other one-edge and whose 
sum, with the inclusion of the two Q, associated with the two corners included in the 
one-edge if it is compact, is identically one in a neighbourhood of that one-edge. 

(4) For each ‘two-edge’ of aA, the non-empty intersection of two distinct an:, 
there is a subset of the {Q~}, whose supports intersect no other two-edge and whose 
sum, with the inclusion of any {Q,} associated with any corners or one-edges included 
in the two-edge, is identically one in a neighbourhood of that two-edge. 

( 5 )  The analogous construction for ‘three-edges’ (which are, of course, just the 
faces dA:). 

Proposition A3. Zl,*ea,\:R-l is a direct sum. 

Proof. Suppose 4 E Xi,*ed,i:,%-l and we can write 

i.f i. f 
(A3.1) 

then we have to show that f :  = g: for each index ( i ,  *). From (A3.1) we have that 

(A3.2) 

and from (A3.2) we see that h f  is supported in aA:nu, i ,* ) t , l . t )aA:  which is a 
non-disjoint collection of two-edges, one-edges and corners. Now let {vi} E 9’ and write 

(A3.3) 

where the {pAi} are those members of {pi} associated with the two-edges in supp h f ,  
the { ( P B k }  are those members of {qi} associated with the one-edges in supp h: and 
{ c p C l }  are associated with the corners in supp h T. Pick one particular qAjh T term and 
consider its Fourier transform. We have that qAjh:  is compactly supported on a 
hyperplane of dimension two, therefore F(cpaih;) is (modulo a factor eipx) a poly- 
nomially bounded entire function of type zero in at least two momentum variables 
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by the Paley-Wiener theorem. By a theorem of Bernstein (Boas 1954, theorem 
6.2.13) we must have that lF(cpAih:)l' is a polynomial in the modulus of each of these 
two momentum variables and thus, for its 2t'-l. norm to converge, must be identically 
zero. So qAih = 0. Since this result holds for all the qAj in all {vi}  E B we see that 
h :  must be supported on the one-edges in aAT. We now repeat the same reasoning 
for the Q B k h  T, the Paley-Wiener-Bernstein argument holding for three momentum 
variables; and then again for the cpcrhT. We conclude that h :  has no support and so 
is zero. Repeating the derivation for all other indices (i, *) completes the proof. 

We emphasise here that we have not said whether or not XI,* spans ea, ,X1.  
There may well be distributions in which cannot be written as a sum of 
distributions supported on the individual faces. The reader familiar with the flavour 
of modern boundary-value problem theory will not be startled by such caution. 

Next, a little abstract nonsense. We recall that a quadratic form on a Hilbert space 
H is coercive if it satisfies G ( x ,  x )  for all vectors x E H  and some K > 0. 

Lemma A4. Let A be a closed subspace of a Hilbert space H and G a non-negative 
quadratic form which satisfies G(x, x )  = 0 for all x E A .  Then G is coercive on A' if 
and only if it is coercive on any other (topological) complement of A .  

Proof, Let S be a topological complement of A in H, G be coercive on A' (with 
constantK), and let x = a  +b = U  + U  where a ,  U E A ,  b EAI  and u ES. Then the map 
a :A'+ S :  b + U  = b + (a  - U )  is one-one and onto since S is a complement, and 
continuous since S is a topological complement so there is a K I  such that (1611 ~Kll lvi i .  
Since G is non-negative, it satisfies a Cauchy-Schwartz inequality, whence G(x, U )  = 0 
if U E A .  Therefore 

G(u ,  u ) = G ( b + ( a - U ) ,  b + ( a  -~) )=G(b,b)~Kl lb11~2KK:i lu11~ (A3.4) 

and G is coercive on S .  Reversing the roles of A -  and S in the above argument gives 
the reverse implication, completing the proof. 

We define convenient subspaces A and S in Z,,+ea,,:X-l as follows. Pick i and 
define the projections a, and U, on eJ\:%-l@ed\;%-l by 

a , ( f ) = a , ( f ' ( .  . * X I . .  .)+f-(. 1 * x , .  . *)) 

u,(f) =al(f+(. . . x , .  9 .)+f-(. 9 * X I .  * *)I  
=+If'(. . . x , .  . .)+f-(. . . x , .  . .)-f'(. . . - x ~ .  . .)-f-(. . . - x , .  . .)} (A3.5) 

=${f'(. . . x , .  . .)+f-(. . . - x 1 . .  .)+f'(. . . - x , .  . .)+f-(. . .-.I-,.. .)}. (A3.6) 

Here f' are the components off  supported in aA: and f*(. . . - x ,  . . .) are the distribu- 
tions obtained by reflecting in the x ,  = 0 hyperplane. Clearly llalll = \lvlll = 1 and a, +v, = 
0 r (ea,;%-l @J\;%-l). Defining a = X,a,, v = X,r, we construct the subspaces A and 

A = I m a  = K e r r  S = Im r = Ker a. (A3.7) 

Now if f c A  then f is an antiperiodic boundary form hence XnUEf = 0 where the U: 
are the translation operators which implement periodic boundary conditions, thus 
(f, G;f)=2 = 0 and by lemma A4, coercivity on A' is equivalent to coercivity on 

s by 
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S provided El,+ spans ea,,%-l. This is certainly the case for finite-temperature 
field theory posed as a boundary value problem since A={x ER‘: lxoI <$3} has a 
boundary consisting of a disjoint union of the faces a& = {x E R4: xo = $3} U a& = 
{x E R4: xo = -:p>. 

Proof of theorem 20. Let f E ea,,;X-l. Introduce a partition of unity {pi}e 9 and write 
f = Z f ,  where f i  = pi. Then we can apply the Paley-Wiener-Bernstein argument of 
proposition A3 to deduce that the Fourier transform of f ,  is of the form 
eipop’2f;.(pl,p2,p3). Adding, we find that the same is true for f. Thus if g ES, its 
transform is of the form cos(ppo/2)g‘Cp). We can thus evaluate llgll!l and (g, G I g ) L 2  
explicitly. We find 

I ”  

where 

(A3.8) 

(A3.9) 

(A3.H) 

Since and O2 have the same abymptotic form and are continuous on (0, CO) we can 
clearly arrange a constant K ( m 2 )  such that K ( m 2 ) @ 2 ( ~ ) 3 @ I ( ~ )  for x a m  > O  and 
hence that the integrand in (A3.9) dominates the integrand in (A3.8) pointwise, leading 
to K ( m 2 ) ( g ,  G : g ) L 2 3 ( g ,  g)-l completing the proof of coercivity. 

To conclude, we remark that even putting aside the issue of whether Xi,* ea,,:X-l 
or not it is evident that the above proof ~ o u l d  have become considerably spans 

more difficult had we had more than one pair of faces to deal with in aA. 
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